234784

(2016) Synthese 193 (12).

Computational neuroscience and localized neural function

Daniel C. Burnston

pp. 3741-3762

In this paper I criticize a view of functional localization in neuroscience, which I call “computational absolutism” (CA). “Absolutism” in general is the view that each part of the brain should be given a single, univocal function ascription. Traditional varieties of absolutism posit that each part of the brain processes a particular type of information and/or performs a specific task. These function attributions are currently beset by physiological evidence which seems to suggest that brain areas are multifunctional—that they process distinct information and perform different tasks depending on context. Many theorists take this contextual variation as inimical to successful localization, and claim that we can avoid it by changing our functional descriptions to computational descriptions. The idea is that we can have highly generalizable and predictive functional theories if we can discover a single computation performed by each area regardless of the specific context in which it operates. I argue, drawing on computational models of perceptual area MT, that this computational version of absolutism fails to come through on its promises. In MT, the modeling field has not produced a univocal computational description, but instead a plurality of models analyzing different aspects of MT function. Moreover, CA cannot appeal to theoretical unification to solve this problem, since highly general models, on their own, neither explain nor predict what MT does in any particular context. I close by offering a perspective on neural modeling inspired by Nancy Cartwright’s and Margaret Morrison’s views of modeling in the physical sciences.

Publication details

DOI: 10.1007/s11229-016-1099-8

Full citation:

Burnston, D. C. (2016). Computational neuroscience and localized neural function. Synthese 193 (12), pp. 3741-3762.

This document is unfortunately not available for download at the moment.