(2007) Synthese 156 (2).

Towards completeness

Husserl on theories of manifolds 1890–1901

Mirja Hartimo

pp. 281-310

Husserl’s notion of definiteness, i.e., completeness is crucial to understanding Husserl’s view of logic, and consequently several related philosophical views, such as his argument against psychologism, his notion of ideality, and his view of formal ontology. Initially Husserl developed the notion of definiteness to clarify Hermann Hankel’s ‘principle of permanence’. One of the first attempts at formulating definiteness can be found in the Philosophy of Arithmetic, where definiteness serves the purpose of the modern notion of ‘soundness’ and leads Husserl to a ‘computational’ view of logic. Inspired by Gauss and Grassmann Husserl then undertakes a further investigation of theories of manifolds. When Husserl subsequently renounces psychologism and changes his view of logic, his idea of definiteness also develops. The notion of definiteness is discussed most extensively in the pair of lectures Husserl gave in front of the mathematical society in Göttingen (1901). A detailed analysis of the lectures, together with an elaboration of Husserl’s lectures on logic beginning in 1895, shows that Husserl meant by definiteness what is today called ‘categoricity’. In so doing Husserl was not doing anything particularly original; since Dedekind’s ‘Was sind und sollen die Zahlen’ (1888) the notion was ‘in the air’. It also characterizes Hilbert’s (1900) notion of completeness. In the end, Husserl’s view of definiteness is discussed in light of Gödel’s (1931) incompleteness results.

Publication details

DOI: 10.1007/s11229-006-0008-y

Full citation:

Hartimo, M. (2007). Towards completeness: Husserl on theories of manifolds 1890–1901. Synthese 156 (2), pp. 281-310.

This document is unfortunately not available for download at the moment.