Repository | Journal | Volume | Articles

(1991) Synthese 87 (1).
Wittgenstein's philosophy of mathematics has long been notorious. Part of the problem is that it has not been recognized that Wittgenstein, in fact, had two chief post-Tractatus conceptions of mathematics. I have labelled these the calculus conception and the language-game conception. The calculus conception forms a distinct middle period. The goal of my article is to provide a new framework for examining Wittgenstein's philosophies of mathematics and the evolution of his career as a whole. I posit the Hardyian Picture, modelled on the Augustinian Picture, to provide a structure for Wittgenstein's work on the philosophy of mathematics. Wittgenstein's calculus period has not been properly recognized, so I give a detailed account of the tenets of that stage in Wittgenstein's career. Wittgenstein's notorious remarks on contradiction are the test case for my theory of his transition. I show that the bizarreness of those remarks is largely due to the calculus conception, but that Wittgenstein's later language-game account of mathematics keeps the rejection of the Hardyian Picture while correcting the calculus conception's mistakes.
Publication details
DOI: 10.1007/BF00485331
Full citation:
Gerrard, S. (1991). Wittgenstein's philosophies of mathematics. Synthese 87 (1), pp. 125-142.